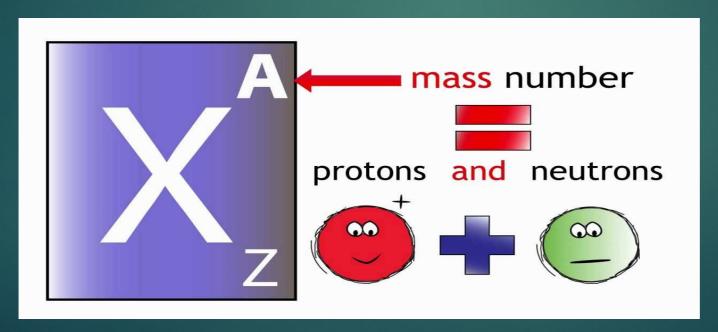

ATOMIC ENERGY

ATOMIC STRUCTURE

Elements consists of thin bits of matter called as atoms.


DEFINITION

An atom is defined as the smallest indivisible particle of an element that can take part in the chemical reaction.

- The atoms can join together and chemical units are formed they are called as molecules.
- Example; water molecule H2O.
- The protons and neutrons are clustered at the center of the atom, called the nucleus.

ATOMIC NUMBER AND MASS NUMBER

- ► The number of protons in an atom is equal to the number of electrons and is called as the atomic number.
- ► The sum of the protons and the neutrons present in the nucleus is called as the mass number.

Conti...

► ISOMER:

▶ This is an exited state of nucleus and it will have same number of proton and neutron.

► ISOBARS:

Nuclides having the same mass numbers but different number of protons are called isobars.

► ISOTONES:

Nuclides having same number of neutrons but different number of protons are called as isotones.

► ISOTOPES:

▶ The atoms composed of nuclei with the same number of protons but different number of neutrons are called as isotopes.

X - rays

- X-radiation (composed of X-rays) is a form of electromagnetic radiation.
- Most X-rays have a wavelength ranging from 0.01 to 10 nanometers, corresponding to frequencies in the range 30 to 30 exahertz.
- X-ray wavelengths are shorter than those of UV rays and typically longer than those of gamma rays.

PROPERTIES OF X- RAYS

- X-rays are electromagnetic radiations of shorter wave length.
- In free space they travel in the straight line.
- X-rays cannot be focused on a same point.
- They cannot be heard.
- They cannot be smelt.
- They cannot be reflected, refracted and deflected by magnetic field or electric field.
- X-rays can penetrate into solids, liquids and gases.
- An X-RAY is capable of producing an can photographic image.
- They are not influenced by magnetic filed.
- X –rays produce chemical changes in substances through which they pass.

PRODUCTION OF X-RAYS

- ➤ X-rays are produced due to sudden deceleration of fast moving electrons when they collide and interact with the target anode.
- ▶ In this process of deceleration, more than 99% of the electron energy is converted into heat and less than 1% of energy is converted into X-rays.
- ▶ The moving electron possesses the kinetic energy.
- When the movement of electron is stopped its kinetic energy is converted into heat and X-rays.

RADIOACTIVITY

- Radioactivity is a nuclear phenomenon, was first discovered by Henri in 1896, unit is Becquerel (Bq).
- Radioactivity is the process by which a nuclei undergo disintegration and emits either alpha or beta or gamma radiations.
- During this process the atom changes its atomic number and chemical identity.
- An atom with unstable nuclei and perform radioactivity is called radioisotope.
- Radio activity can be natural or artificial.
- ► The elements having atomic number more than 82 is the natural isotopes.
- ► The elements having atomic number less than 32 is the artificial isotopes.

PROPERTIES OF GAMMA RAYS

- Gamma, γ-rays are not deflected by electric and magnetic fields. It shows that they do not have any charge.
- Gamma, γ-rays are electromagnetic waves like X-rays. The wavelength of γ-ray photon is smaller than that of X-rays.
- The rest mass of a Gamma, γ-ray photon is zero.
- Gamma, γ-rays travel with the speed of light.
- Gamma, γ-rays have very large penetrating power. They can pass through several centimeter of iron and lead.

Conti...

- Gamma, γ-rays affect a photographic plate more than β-particles
- Gamma, γ-rays can knock out electrons from the surface of a metal, on which they may fall.
- Gamma, γ-rays can produce nuclear reactions.
- Gamma, γ-rays have got small ionizing power.

HALF LIFE PERIOD

► The half life of a radio active element is defined as the time taken for half the number of atoms to disintegrate.

BIOLOGICAL EFFECTS:

- When X-ray passes through the human body, they transfer energy to the atoms and release electrons.
- ▶ This will release in the breakage of chemical bonds and production of free radicals such as DNA and RNA.
- ► Thus the body experiences damage to the eyes, erythema and sterility.

RADIATION MEASURING DEVICES

- ► GENERAL PURPOSE SURVEY METERS:
 - ▶ portable radiation monitors used for a wide range of radiation measurement applications; used to measure radiation levels, quantify surface contamination, detect X-ray leakage, conduct contamination surveys.
- ► ELECTRONIC DOSIMETERS:
 - ▶ instruments used to measure and record radiation doses received by individuals and monitor environmental dose rate levels.
 - Indicate radiation dose rates in real time, store dose rate histories for subsequent download, and activate alarms in high radiation fields.

CONTI...

SEARCH INSTRUMENTS OR PRD'S:

- ▶ Personal radiation detectors (PRDs), and instruments designed for the search and localization of radioactive material.
- ► Highly-sensitive portable devices used to detect and search for radiation sources either passively or actively.

PORTAL MONITORS:

Large, fixed radiation detectors for monitoring entrances or transport infrastructure for the entry/passage of radioactive and nuclear materials. Can be configured to monitor trucks, railways, cars or pedestrians.

Conti...

► PORTABLE SPECTROMETERS:

Devices able to distinguish and identify different radioactive isotopes, often multipurpose/multitask instruments used to perform a variety of functions and detect different forms of radiation.

► RADON MEASUREMENT:

Instruments for evaluation of radon and thoron gas concentrations in homes, workplaces, construction sites, public buildings, measure radon levels in air, soil and water.

